Attosecond and strong-field physics :
Lin, C. D.
Attosecond and strong-field physics : principles and applications / C. D. Lin and others - United Kingdom Cambridge University Press 2018 - 405 p.
Probing and controlling electrons and nuclei in matter at the attosecond timescale became possible with the generation of attosecond pulses by few-cycle intense lasers, and has revolutionized our understanding of atomic structure and molecular processes. This book provides an intuitive approach to this emerging field, utilizing simplified models to develop a clear understanding of how matter interacts with attosecond pulses of light. An introductory chapter outlines the structure of atoms and molecules and the properties of a focused laser beam. Detailed discussion of the fundamental theory of attosecond and strong-field physics follows, including the molecular tunnelling ionization model (MO-ADK theory), the quantitative rescattering (QRS) model, and the laser induced electronic diffraction (LIED) theory for probing the change of atomic configurations in a molecule. Highlighting the cutting-edge developments in attosecond and strong field physics, and identifying future opportunities and challenges, this self-contained text is invaluable for students and researchers in the field.
9781107197763
Laser pulses, Ultrashort
Lasers in physics
Atomic structure
621.3660 LIN-C
Attosecond and strong-field physics : principles and applications / C. D. Lin and others - United Kingdom Cambridge University Press 2018 - 405 p.
Probing and controlling electrons and nuclei in matter at the attosecond timescale became possible with the generation of attosecond pulses by few-cycle intense lasers, and has revolutionized our understanding of atomic structure and molecular processes. This book provides an intuitive approach to this emerging field, utilizing simplified models to develop a clear understanding of how matter interacts with attosecond pulses of light. An introductory chapter outlines the structure of atoms and molecules and the properties of a focused laser beam. Detailed discussion of the fundamental theory of attosecond and strong-field physics follows, including the molecular tunnelling ionization model (MO-ADK theory), the quantitative rescattering (QRS) model, and the laser induced electronic diffraction (LIED) theory for probing the change of atomic configurations in a molecule. Highlighting the cutting-edge developments in attosecond and strong field physics, and identifying future opportunities and challenges, this self-contained text is invaluable for students and researchers in the field.
9781107197763
Laser pulses, Ultrashort
Lasers in physics
Atomic structure
621.3660 LIN-C