Sobolev spaces on metric measure spaces : an approach based on upper gradients /

Heinonen, Juha

Sobolev spaces on metric measure spaces : an approach based on upper gradients / Juha Heinonen...[et.al.]., - Cambridge University Cambridge University Press 2015 - 434p. - New mathematical monographs 27 .


Analysis on metric spaces emerged in the 1990s as an independent research field providing a unified treatment of first-order analysis in diverse and potentially nonsmooth settings. Based on the fundamental concept of upper gradient, the notion of a Sobolev function was formulated in the setting of metric measure spaces supporting a Poincaré inequality. This coherent treatment from first principles is an ideal introduction to the subject for graduate students and a useful reference for experts. It presents the foundations of the theory of such first-order Sobolev spaces, then explores geometric implications of the critical Poincaré inequality, and indicates numerous examples of spaces satisfying this axiom. A distinguishing feature of the book is its focus on vector-valued Sobolev spaces. The final chapters include proofs of several landmark theorems, including Cheeger's stability theorem for Poincaré inequalities under Gromov-Hausdorff convergence, and the Keith-Zhong self-improvement theorem for Poincaré inequalities.

9781107092341


Metric spaces
Sobolev spaces
MATHEMATICS -- Calculus.

515.7 HEI-J
An institution deemed to be a University Estd. Vide Sec.3 of the UGC
Act,1956 under notification # F.12-23/63.U-2 of Jun 18,1964

© 2024 BITS-Library, BITS-Hyderabad, India.