Amazon cover image
Image from Amazon.com

Introducing MLOps : how to scale machine learning in the enterprise / Mark Treveil

By: Material type: TextTextPublication details: India Shroff Publishers 2020Description: 169 pISBN:
  • 9789385889769
Subject(s): DDC classification:
  • 006.31 TRE-M
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Shelving location Call number Status Date due Barcode Item holds
Books Books BITS Pilani Hyderabad 003-007 General Stack (For lending) 006.31 TRE-M (Browse shelf(Opens below)) Available 46280
Total holds: 0

More than half of the analytics and machine learning (ML) models created by organizations today never make it into production. Some of the challenges and barriers to operationalization are technical, but others are organizational. Either way, the bottom line is that models not in production can't provide business impact.

This book introduces the key concepts of MLOps to help data scientists and application engineers not only operationalize ML models to drive real business change but also maintain and improve those models over time. Through lessons based on numerous MLOps applications around the world, nine experts in machine learning provide insights into the five steps of the model life cycle--Build, Preproduction, Deployment, Monitoring, and Governance--uncovering how robust MLOps processes can be infused throughout.

This book helps you:

Fulfill data science value by reducing friction throughout ML pipelines and workflows
Refine ML models through retraining, periodic tuning, and complete remodeling to ensure long-term accuracy
Design the MLOps life cycle to minimize organizational risks with models that are unbiased, fair, and explainable
Operationalize ML models for pipeline deployment and for external business systems that are more complex and less standardized.

There are no comments on this title.

to post a comment.
An institution deemed to be a University Estd. Vide Sec.3 of the UGC
Act,1956 under notification # F.12-23/63.U-2 of Jun 18,1964

© 2024 BITS-Library, BITS-Hyderabad, India.