000 | 01997nam a22002057a 4500 | ||
---|---|---|---|
999 |
_c65269 _d65269 |
||
008 | 200605b2018 ||||| |||| 00| 0 eng d | ||
020 | _a9789352137251 | ||
082 | _a006.31 BUR-S | ||
100 | _aBurger, Scott V. | ||
245 |
_aIntroduction to machine learning with R : _brigorous mathematical analysis / _cScott V. Burger |
||
260 |
_aIndia _bShorff Publishers & Distributors _c2018 |
||
300 | _a212 p. | ||
365 |
_aINR _b650.00. |
||
500 | _aMachine learning is an intimidating subject until you know the fundamentals. If you understand basic coding concepts, this introductory guide will help you gain a solid foundation in machine learning principles. Using the R programming language, you’ll first start to learn with regression modelling and then move into more advanced topics such as neural networks and tree-based methods. Finally, you’ll delve into the frontier of machine learning, using the caret package in R. Once you develop a familiarity with topics such as the difference between regression and classification models, you’ll be able to solve an array of machine learning problems. Author Scott V. Burger provides several examples to help you build a working knowledge of machine learning. Explore machine learning models, algorithms, and data training Understand machine learning algorithms for supervised and unsupervised cases Examine statistical concepts for designing data for use in models Dive into linear regression models used in business and science Use single-layer and multilayer neural networks for calculating outcomes Look at how tree-based models work, including popular decision trees Get a comprehensive view of the machine learning ecosystem in R Explore the powerhouse of tools available in R’s caret package | ||
650 | _aR (Computer program language) | ||
650 | _aMachine learning | ||
650 | _aStatistics--Data processing | ||
650 | _aMathematical statistics--Data processing | ||
650 | _aNeural networks (Computer science) |